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Predictive Characterization Model for 
Impact Cushioning Curves: Configuring the 

Predictive Characterization Model 
S.-W. Lye and S. Chuchom 

Engineers and designers utilize mechanical properties and material behavior to assist in the design and 
manufacture of  products. The material data obtained from standard tables tend to be general and may 
not correlate well with the actual material being used. To meet the design specifications, a larger number 
of iterative experimental tests than planned are usually conducted. This paper explores the use of neural 
networks as a predictive approach to characterize the impact cushioning curves so as to reduce the num- 
ber of experimental tests required. Key design considerations in configuring a neural network for opti- 
mal performance are also highlighted. This approach is able to predict the points on the curves quite 
accurately but does have some limitations. To develop an effective predictive characterization model,  the 
neural networks need to couple with appropriate algorithms so as to obtain a set of randomly distributed 
training data and generate the requisite points for curve characterization. Two algorithms are developed 
and found to be suitable for this purpose. 
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1. Introduction 

THE MECHANICAL PROPERTIES and behaviors of  various 
materials can be found in engineering tables and curves. To ob- 
tain most of  these data, a large number of repetitive experimen- 
tal setups and tests are required. Engineers and designers use 
the information to assist in the design and manufacture of  prod- 
ucts and components. Nevertheless, such tables and curves 
have inherent limitations owing to their generality. The de- 
signed product and the test specimens may be different in terms 
of  (a) the composition and mechanical properties of  material 
used; (b) the varying testing parameters and conditions 
adopted, and (c) the manufacturing operations to produce 
them. For most material end users, a common industrial prac- 
tice is that whenever product designers make use of engineer- 
ing tables or curves, the batch of  manufactured products has to 
be subjected to a series of  iterative and laborious tests (usually 
the original number of tests is exceeded) in order that the final 
product will conform to the desired specifications. This prac- 
tice is costly and can easily be improved if designers are given 
a more accurate and up-to-date set of  material data and proper- 
ties from the materials suppliers. This is easier said than done 
as material manufacturers and suppliers have to be concerned 
about their own profits and goals. Besides, the number of  new 
and modified materials is constantly evolving. Most manufac- 
turers would conduct their own set of tests so as to establish a 
set of  proprietary data or curves for product differentiation and 
evaluation. 

The material characterization for product protection from 
impact shock is one such example. The amount of current data 
available on protective packaging materials such as expand- 
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able polystyrene (EPS) (Ref 1, 2), paper pulp (Ref3), and poly- 
urethane foam (Ref 4) is restricted. Little work has also been 
done to characterize buffer materials containing recycled mate- 
rials (Ref 5). Most cushioning buffers are made of  expandable 
polystyrene positioned at the ends, edges, or corners of the 
product and then packed into a corrugated box. Current ap- 
proaches in designing these cushioning buffers are quite well 
discussed in a number of  published articles that rely mainly on 
historical material data and properties found in the set of  cush- 
ioning curves (Ref 1-6). In some cases, data are not available, 
and attempts to estimate the material properties might need to 
be made. 

2. Current Practice of Establishing EPS 
Cushioning Curves 

Figure 1 shows a typical set of  impact cushioning curves for 
expandable polystyrene, Styropor (BASFAktiengesellschaft, 
Ludwigshafen, Germany) of  a particular material density. Each 

Ilnf t ;I  IlL] Jl t I l l l  I I I  

1 I l l  I" / ~.1 . . . . . . . . .  z 
"~ |  I l i l  I / ,,r'l I I I I I , I  1 I | 

,V ]- I I I I /  
I I  ~'k' tV .,t'.,vl..t-'~ I I I / 1 1 1  / 

" . t  I i%~k'~,T,I I/r/i".p.'r J-~"bJ I I I I / /  / 
tA" bk'r~3--; ~, I 

,,111 1 ~ - 4 . . 4 - '  !L-zhr: i ~ , :  
111 I l t l~  I I I I ~ - ~ ~ , - v ~ - J . :  

Static Surface Loading, o (cN/cm ~) 

Fig. 1 Cushioning curves for expanded Styropor 
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shock curve describes the material in terms of  its impact G val- 
ues at different static stresses. The impact G value is computed 
based on the ratio of  the deceleration transmitted to the product 
at impact with the surface over the gravitational acceleration. 
For static stress, the value can be obtained by dividing the prod- 
uct weight over the cushioning area as illustrated in Fig. 2. Fig- 
ure 1 shows most cushion curves tend to exhibit a "U" 
relationship. This is because at low static stress, the weight of 
the product is not able to deflect the material at impact. The re- 
sult is that the material does not function as an effective cush- 
ioning medium. As the static stress value is increased, the 
product weight can deflect the material causing it to act like a 
shock absorber. The effectiveness of  the material to act as a 
cushioning medium reaches an optimum static stress value af- 
ter which any further deflection bottoms out leading to a higher 
acceleration level being transmitted. 

To establish a set of  impact cushioning curves, numerous 
drop tests according to ASTM standard (Ref 7) need to be con- 
ducted at various drop heights of  different material densities 
and thicknesses. This is usually done using a standard drop test 
machine where a flat dropping head, having a larger surface 
area than the test specimen, is vertically raised and dropped 
onto a test specimen laid on a massive anvil surface parallel to 
the head. An accelerometer, usually mounted to the rigid por- 
tion of  the product near the center of  gravity, is used to monitor 
the acceleration level transmitted through the cushioning mate- 
rial into the product. An oscillograph is used to record the ac- 
celeration level calibrated to obtain the G factor. For each point 
on the curve, five repeated tests from a particular drop height 
are made. The average of  the G values recorded from the last 
four of these drops is the value used in plotting each cushion 
curve point. Thus, if  one needs to establish a set of  17 cushion- 
ing curves as shown in Fig. 1,510 tests (assuming 6 points per 
curve) will need to be carded out for one material density only. 
For points that do not lie on these curves, one would need to in- 
terpolate to obtain the result. Generally, material manufactur- 

ers need to supply the cushioning data for a discrete number of  
densities. This step is costly, tedious, and time consuming to 
the material manufacturers faced with the need to constantly 
develop new and better materials over a period of  time. One ef- 
fective solution is to develop an approach that could substan- 
tially reduce the number of  experimental data required and yet 
not compromise the accuracy or quality in matching the actual 
curve profiles, which is the focus of  the following section. 

3. Neural Network for Predicting Cushioning 
Curve Characteristics 

3.1 Description of a Simple Feedforward Back 
Propagation Neural Network 

A neural network is an information processing system con- 
sisting of  many interconnections and nodes organized in a par- 
allel distributed manner (Ref 8). Each connection points from 
one node to another and is associated with a weight that high- 
lights the importance of the relationship. To design, configure, 
and optimize the performance of  a neural network for an appli- 
cation involves two key phases: training and consultation of the 
network. Training is forcing the neural network to yield to a 
particular response to a specific input. Once trained, the net- 
work is ready for consultation or use. Although a lot of  research 
work is done in developing appropriate methods for training 
and consultation, no single method clearly suits all applications 
(Ref 8-10). Nevertheless, there are certain accepted guidelines 
for selecting a suitable type of  neural network for a particular 
application. In this work, a multilayered feedforward back 
propagation neural network for characterizing and predicting 
the impact G values of a cushioning material for product pro- 
tection is investigated. The multilayered feedforward back 
propagation approach was adopted as it was applied success- 
fully in many robust pattern recognition problems (Ref 9). The 
term feedforward related to the consultation phase, whereas 
back propagation refers to the training or learning phase of  the 
neural network. 

Figure 3 shows a one-layered neural network consisting of  
three input nodes, one hidden node, and two output nodes. Dur- 
ing consultation, all connections point (feedforward) in one di- 
rection from the input nodes to the output nodes. The network 
is activated by introducing values to the three input nodes. (X1, 
X 2, X3), which are then relayed to node Y. At node Y, a selected 
linear or nonlinear activation transfer function is used to com- 
pute the nodal value based on these input values and associated 
weights. A commonly used activation transfer function is the 
sigmoid function (Ref 8): 
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Fig. 3 A simple neural network 

The nodal value at Y is then sent to nodes Z 1 and Z 2. Based on 
the residing activation transfer function, the nodal values at Z 1 
and Z 2 are computed. By adjusting the number of hidden lay- 
ers, nodes, associated weights, and activation transfer func- 
tions at the nodes, the neural network is able hopefully to 
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establish appropriate relationships between the set of  input val- 
ues and the desired output values. 

For training, the network is given both the input and output 
values. The input values are fed forward to obtain their output 
values. The data are then back propagated or relayed backward 
to enable the neural network to determine a suitable function by 
attempting to minimize the errors between the generated and 
desired values during training. This is done by first calculating 
the activation values at the output nodes (Z 1 and Z 2) and then 
comparing them with the desired values to determine the asso- 
ciated errors for that pattern. The error factor is generally com- 
puted based on the difference between activation and desired 
values. These error factors are relayed backward to node Y1. 
The nodal value at Y1 is computed based on the output values, 
associated weights, error factors, and activation transfer func- 
tion. In a similar manner, the error factor for node Y1 is com- 
puted and relayed backward to the three input nodes (X 1, X2, 
and X3). After all the error factors are determined, the weights 
for all layers are adjusted simultaneously based on the error 
factors and the activation values of  the connecting nodes. The 
weight change is the product between the learning rate or mo- 
mentum and the error factor in the prior layer. Learning rate is 
the step size of  each learning or iterative cycle; whereas learn- 
ing momentum refers to the curve gradient of change. A neural 
network typically might take about 60,000 learning cycles be- 
fore the data converge to an acceptable level. 

3.2 Design Considerations in Configuring a Neural 
Network 

This section discusses three key considerations in configur- 
ing an appropriate feedforward back propagation neural net- 
work used for predicting the impact cushioning curves. They 
are the network properties, the nature of  the input data, and data 
convergence. 

3.2.1 Network  Properties 

A basic network structure that consists of  three input nodes, 
multiple intermediate layers having varying number of  nodes, 
(as highlighted in Table 1) and one output node is investigated. 
The three input nodes are the parameters of  static stress, ratio of  
drop height/cushioning thickness required (h/d), and the mate- 
rial density as found in the impact cushioning curve. The output 
node registers the desired impact G factor. To train each neural 
network structure, 100 data points obtained from the various 
BASF impact cushioning curves for material densities of  20, 
25, and 30 kg/m 3 are used. The neural network adopts the back 
propagation approach for training. The activation transfer 
function for the first connection layer is based on the tangent 
sigmoid function, whereas the remaining connection layers use 
the log sigmoid function. The neural network consisting of  
three input nodes, two intermediate layers having eight and two 
nodes, respectively, and one output node (G-value) yields the 
least RMS error variance of  1.5%. Therefore, the neural net- 
work is able to predict quite accurately the points on the impact 
cushioning curves and thus be adopted for this work. If  a more 
accurate value is required, one might need to try out alternative 
network structures, introduce bias weights, or adopt other 
transfer functions until a suitable one is obtained on a trial-and- 
error basis. 

3.2.2 Nature o f Input  Data 

Another design consideration is the effect different clus- 
tered input data patterns have on the integrity of the neural net- 
work in predicting the desired output values accurately. Four 
sets of tests were conducted using eight h/d cushioning curves. 
The data obtained were either randomly distributed, randomly 
distributed in clusters, or right clustered and left clustered as 
highlighted in Fig. 4. Each test was conducted using 48 points 
from eight h/d curves for a material density of 20 kg/m 3. The 
neural network model is based on the above basic structure 
having 3 input nodes: 2 intermediate layers of  8 and 2 nodes, re- 
spectively, and one output node. This network configuration is 
adopted here. 

Table 2 shows the results of  the four different clustered 
data patterns. I f  the data were randomly distributed, the net- 
work would be able to predict  more accurately the actual 
curve characterist ics than the other clustered data patterns. 
This result  is consistent  with convent ional  curve-fit t ing ap- 
proaches,  as the back propagat ion approach adopts a certain 
learning function that is also dependent  on the appropriate-  
ness of  the inputs. The results highlight  the importance of  se- 
lecting the right initial set of  training data that would best  
describe the actual material  propert ies  and behavioral  pat- 
tern. Therefore,  an algori thm has to be developed to ensure 
that the experimental  points der ived for network are random 
and well-distr ibuted in character izing a set of  cushioning 
curves for a new material.  

3.2.3 Data Convergence 

Accuracy is a crucial factor if the neural network is to be 
used as a predictive tool since the values generated by the net- 
work are unlikely to match exactly the desired values. Noncon- 
vergence of  the data can occur due to inappropriate selection of  
the learning algorithms adopted. Researchers have developed 
many learning algorithms for neural applications (Ref 8-11). 
The result is that the final error between the generated and de- 
sired values is too large to be of  use. Another concern is if the 

Table 1 The RMS errors obtained for different number of  
nodes for multiple intermediate layers 

Nodes in the intermediate levels 
First 

RMS output error 
Second after 60,000 training cycles 

6 2 1.85 
8 2 1.51 
6 3 1.62 
9 3 1.85 
4 0 3.49 
7 0 3.33 

Table 2 RMS errors of various clustered data patterns 

No. of trained RMS output 
Group patterns data points error, % 

Random distributed 48 2.06 
Cluster distributed 48 5.04 
Left cluster 48 18.08 
Right cluster 48 9.55 

Journal of Materials Engineering and Performance Volume 6(2) April 1997--211 



150 

120 

:= 90 
> 

I 60 

30 

150 

120 

ID 
:= 90 

i 

G I  

> 
I 

r 60 

3 0  

0 
0 

+ h / d = 8  

e h / d =  1 0  

h/d = 16 

�9 h /d  = 20 

Left Cluster 

. . . . . . .  . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  e e  e u . . . . .  

i | 

40 80 120 
Static Surface Loading 

Left-Right Cluster 

�9 o o  

. . . . . .  i . . . .  . . . . . .  

n l l t i 

0 50 100 150 200 250 
Static Surface Loading 

Fig. 4 The effect of group patterns in training neural networks 
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data converge too slowly and the training process has to be 
aborted. Therefore, the data introduced into the network must 
converge to an acceptable error range during training. Based on 
the adopted neural network configuration, the sum of  squares 
error (SSE) is set at 0.001, which is the error criterion to be sat- 
isfied. For training, the network adopts the momentum with 
learning rate approach (Ref 11), in which adjustment to the 
weights of the network are based not only on the rate value of 
between 0 and 5 but also on the gradient change of  the learning 
curve. After 60,000 cycles, the neural network was found to 
satisfy the error criterion. A section of  the learning curve can be 
found in Fig. 5. 

3.3 Limitations of the Neural Network 

A neural network structure has been established that is able 
to predict quite accurately the points on the curve. For this 
work, three limitations were observed: 

�9 The performance of  the neural network in terms of its accu- 
racy, learning rate, and convergence may not be optimum. 
Much effort in adjusting the network properties or adopting 
more complex algorithms is required if one needs to attain 
a very high order of  accuracy (SSE < 0.001). 

�9 As highlighted earlier, the neural network is dependent on 
a good set of training data. 
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The overall function used to predict the points on the im- 
pact cushioning curves is not known. Neural networks tend 
to adopt a black box approach to problem solving. This 
means that the approach would not be able to properly char- 
acterize the h/d and optimal curves found in the set of  im- 
pact cushioning curves as more points are needed. For the 
predictive characterization model to construct the impact 
cushioning curves, a requisite-point-generation (RPG) al- 
gorithm needs to be developed that enables the requisite 
points to be automatically generated and through which an 
impact cushioning curve can be fitted. 

4. Conclusions 

A multilayered feedforward back propagation neural net- 
work (consisting of  three input nodes, two intermediate net- 
work levels of  eight and two nodes, respectively, and one 
output node) is able to predict points on the impact cushioning 
curves. In training the network, the data converge, having an 

RMS error variance of  1.5. The number of  data points required 
for training the network to facilitate the prediction is substan- 
tially smaller than that required if conventional curve-fitting 
techniques were used. Therefore, fewer experimental data 
points would be required in characterizing a set of impact cush- 
ioning curves for a new material. 

The limitations of  a neural network to be used as a predictive 
characterization model for impact cushioning curves is high- 
lighted. Two algorithms are developed that would enable a ran- 
domly distributed set of  initial experimental points for network 
training and requisite points generation for characterization of  
the impact cushioning curves. Such algorithms better facilitate 
the automation effort of  the predictive characterization model. 
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